Mathematics

1. \[\sum_{j=1}^{5} (j+1)^2 - 1 = (1+1)^2 - 1 + (2+1)^2 - 1 + (3+1)^2 - 1 + (4+1)^2 - 1 + (5+1)^2 - 1 = 2^2 + 3^2 + 4^2 + 5^2 + 6^2 - 5 = 85 \]

2. \[y(2.7) = 7(2.7) + 4.2 = 11.756 \]
 \[y(3.2) = 7(3.2) + 4.2 = 9.916 \]
 \[y(3.9) = 7(3.9) + 4.2 = 12.534 \]

 The estimated value is \[9.916 + 0.7(12.534 - 9.916) = 11.749 \]

 The error is \[\frac{11.756 - 11.749}{11.756} = 0.006 \text{ or } 0.06\% \]

3. Let \(d \) be the diameter.
 \[V_{sphere} = \frac{4}{3} \pi r^3 = \frac{4}{3} \pi \left(\frac{d}{2} \right)^3 = 0.524 d^3 \]
 \[V_{cone} = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi \left(\frac{d}{2} \right)^2 h = 0.262 d^3 h \]

 Out \[0.524 d^3 = 0.262 d^3 h \]
 \[h = 2.00 d \]

4. \[\sin 20^\circ = 0.34 \]
 \[n = 5 \cos 20^\circ = 4.7 \]

5. Expand by 2nd column
 \[= -2 \begin{vmatrix} 4 & 3 \\ 5 & 5 \end{vmatrix} = -2(20 - 27) = 14 \]

6. From Eqn 6.3
 \[250^\circ + 460^\circ = 710^\circ R \]
 \[\frac{5}{9}(250 - 32) = 121.1^\circ C \]

7. From page 1-42,
 \[K = 1.71 \text{ EE-9} \]
 \[Btu = \frac{1.71 \text{ EE-9} \text{ FT}^2 \cdot \text{HR} \cdot \text{R}^4}{(1.71 \text{ EE-9} \text{ FT} \cdot \text{HR} \cdot \text{R}^4) \left(\frac{17.51}{\text{WATT-MIN}} \cdot \frac{1}{\text{Btu}} \right) \left(\frac{1}{60 \text{ MIN}} \right)} \]
 \[(0.3648 \text{ m}^3 \text{A}) \left(\frac{54 \text{ Kf} \cdot \text{R}}{\text{m}^3 \cdot \text{Kf}} \right)^4 \]
 \[= 5.66 \text{ EE-8 WATTS} \]

8. \[y = 6 + 0.75(2-6) = 3.0 \]

9. The slope is \[\frac{9.5-3.4}{8.3-1.7} = 0.924 \]
 Using the first point,
 \[(y-3.4) = 0.924(x-1.7) \]

10. Let \(x \) be the number of elapsed periods of 0.1 second. Let \(y \) be the amount present after \(x \) periods
 \[Y_1 = 1.001 Y_0 \]
 \[Y_2 = (1.001)^2 Y_0 \]
 \[Y_n = (1.001)^n Y_0 \]

 Now \[\frac{Y_n}{Y_0} = 2 = (1.001)^n \]

 \[\log(2) = n \log(1.001) \]
 \[n = \frac{\log(2)}{\log(1.001)} \]
 \[n = 693.5 \text{ periods} \]
 \[t = 69.35 \text{ seconds} \]

Concentrates

First, rearrange

\[X + Y = -4 \]
\[X + Z = 1 \]
\[3X - Y + 2Z = 4 \]

Now use Cramer's rule (page 1-6)

\[\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 3 & -1 & 2 \end{vmatrix} = 11z = 2 \]

\[\begin{vmatrix} 1 & -4 & 0 \\ 0 & -1 & -6 \\ 4 & 1 & 3 \end{vmatrix} = 11z = 4 \]

\[\begin{vmatrix} -4 & -2 & -1 \\ 1 & 1 & 1 \\ 4 & 1 & 3 \end{vmatrix} = x = \frac{4}{5} \]

\[\begin{vmatrix} -1 & -6 & 1 \\ 0 & -6 & 1 \\ 4 & 3 & 2 \end{vmatrix} = y = \frac{3}{2} \]

\[\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 3 & -1 & 4 \end{vmatrix} = z = \frac{4}{5} \]
Always graph the data first to see if it is a straight line. In this case, it is.

\[y = \frac{1}{x} \]

Use linear regression (page 1-13)

\[N = 7 \]
\[\Sigma x = 12550 \]
\[\bar{x} = 1792.9 \]
\[\Sigma x^2 = 3,117,667 \]

\[(\Sigma x)^2 = 1,575,888 \]

\[(\Sigma x^2) = 3,117,667 \]

\[\Sigma y = 12300 \]
\[\bar{y} = 1757.1 \]
\[\Sigma y^2 = 3,017,667 \]
\[(\Sigma y)^2 = 1,513,667 \]

\[\Sigma xy = 3,067,667 \]

\[M = \frac{7(3,067,667) - (12550)(12300)}{7(3,117,667) - (12550)^2} = .994 \]

\[b = 1757.1 - .994(1792.9) = -25.0 \]

so \[y \approx .994x - 25.0 \]

The correlation coefficient is

\[r = \frac{7(3,067,667) - (12550)(12300)}{\sqrt{(7)(3,117,667) - (12550)^2}(7)(3,017,667) - (12300)^2}} = .999 \]

This is a first-order linear differential equation. (page 1-30)

\[m = \exp \int (-1) dx = e^{-x} \]
\[y = e^x [2xe^{-x} + c] \]
\[= e^x [2xe^{-x} - e^x + c] \]

But \[y = 1 \] when \(x = 0 \)

\[1 = 1[0 - 2 + c] \]

\[c = 3 \]

so \[y = 2e^x(x - 1) + 3e^x \]

Upon graphing the data, we see that it is not a straight line.

It looks like an exponential with form

\[t = b e^{ms} \]

Or perhaps

\[\log t = b + ms \]

Try making the variable transformation

\[R = \log t \]

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>1.633</td>
</tr>
<tr>
<td>1.8</td>
<td>2.194</td>
</tr>
<tr>
<td>1.6</td>
<td>2.585</td>
</tr>
<tr>
<td>1.4</td>
<td>3.041</td>
</tr>
</tbody>
</table>

\[N = 4 \]
\[\Sigma S = 6.8 \]
\[\bar{S} = 1.7 \]
\[\Sigma S^2 = 117.6 \]
\[(\Sigma S)^2 = 46.24 \]

\[(\Sigma S^2) = 68.51 \]

\[\Sigma SR = 155.28 \]

\[M = \frac{4(155.28) - (68)(9.96)}{4(117.6) - (68)^2} = -.2328 \]

\[b = 2.352 + .2328(17) = 6.3096 \]

so \[R = 6.3096 - .2328S \]

or \[\log t = 6.3096 - .2328S \]
6. Let \(x_e \) = pounds of salt in tank at time \(t \)
\[x_e = 60 \]

\(x' \) = rate at which salt content changes
2. Pounds of salt entering each minute
3. Gallons leaving each minute.

The salt leaving each minute is
\[3 \left(\frac{\text{concentration}}{\text{lb/gal}} \right) = 3 \left(\frac{\text{salt content}}{\text{volume}} \right) = 3 \left(\frac{x}{100-t} \right) \]

\[x' = 2 - 3 \left(\frac{x}{100-t} \right) \]

Or
\[x' + \frac{3x}{100-t} = 2 \]

This is first order linear (page 1-31)

\[u = \exp \left[3 \int \frac{dt}{100-t} \right] = (100-t)^{-3} \]

\[x = (100-t)^3 \left[2 \int \frac{dt}{(100-t)^3} + k \right] \]

\[= 100-t + k (100-t)^3 \]

But \(x = 60 \) at \(t = 0 \),
so \(k = -0.00004 \)

\[x = 100-t - 0.00004 (100-t)^3 \]

\[x_{60} = 37.44 \text{ pounds} \]

7. If \(c \) is positive, then \(N(\infty) > 0 \),
which is contrary to the given data.
so \(c \leq 0 \).

If \(c = 0 \), then \(N(\infty) = \frac{a}{1+b} = 100 \)
which is possible dependent on \(a, b \).

If \(c > 0 \), then \(N(0) = \frac{a}{1+b} = 10 \) which conflicts with the previous step.

So \(c < 0 \), then \(N(\infty) = 0 \), so \(a = 100 \).
Now \(N(0) = \frac{a}{1+b} = \frac{100}{1+b} = 10 \), so \(b = 9 \).

\[\frac{dN}{dt} = -100(1+9e^{-2}) (9) e^{-2} (c) \]

If \(t = 0 \), then \(c = -0.0556 \).

8. \[\frac{dy}{dx} = 3x^2 - 18y \]

\[3x^2 - 18y = 0 \text{ at all extreme points} \]

\[x^2 - 6x = 0 \text{ at } x = 0, x = 6 \]

\[\frac{dy}{dx} = 6x - 18 \]

\[6x - 18 = 0 \text{ at inflection points} \]

\(x = 3 \) is an inflection point

\[E = \text{MC}^2 = (0.001) \text{Kg} \cdot (3 \text{ EE8})^2 (\text{m/s})^2 \]

\[= 9 \text{ EE}13 \text{ Joules} \]

\[(9 \text{ EE}13) \int \frac{1}{2} \text{kJ} \cdot (9.476) \text{ BTU} \cdot \text{kJ} \]

\[= 8.53 \text{ EE}10 \text{ BTU} \]

\[\text{Tons} = \frac{6.53 \text{ EE}10 \text{ BTU}} {13 \text{ EE}0 \text{ BTU} \cdot (2000) \frac{40}{\text{ TON}}} \]

\[= 3281 \text{ TONS} \]

9. The entropy contained in one gram of any substance is

\[E = \text{MC}^2 = (0.001) \text{Kg} \cdot (3 \text{ EE8})^2 (\text{m/s})^2 \]

\[= 9 \text{ EE}13 \text{ Joules} \]

\[(9 \text{ EE}13) \int \frac{1}{2} \text{kJ} \cdot (9.476) \text{ BTU} \cdot \text{kJ} \]

\[= 8.53 \text{ EE}10 \text{ BTU} \]

\[\text{Tons} = \frac{6.53 \text{ EE}10 \text{ BTU}} {13 \text{ EE}0 \text{ BTU} \cdot (2000) \frac{40}{\text{ TON}}} \]

\[= 3281 \text{ TONS} \]

10. The standard normal variables are

\[z_1 = \frac{.502 - .497}{.005} = 1 \]

\[z_2 = \frac{.507 - .502}{.005} = 1 \]

a) \[P\{ \text{defective} \} = 2 \left(\frac{.5 - .3413}{2} \right) = .3174 \]

b) \[P\{ 3.2 \} = \frac{3}{(3-2)} \cdot (\cdot3174)^2 (1 - .3174)^1 \]

\[= .2063 \]

c) \[(8)(200)(.3174) = 507.8 \]

PROFESSIONAL PUBLICATIONS, INC. • Belmont, CA
b) Use the cumulative distribution graph. For 75% (.75), the cell mid-point is approximately 40.

g) Use the cumulative graph to find the mid-point for 50%. This occurs at approximately 33.

\(\sum x_i = 1390 \), so mean = \(\frac{1390}{40} = 34.875 \)

h) \(\sum x^2 = 50496 \)

\[\sigma = \sqrt{\frac{50496}{40} - \left(\frac{1390}{40}\right)^2} = 7.405 \]

i) \[s = \sqrt{\frac{N}{N-1} (\sigma^2)} = \sqrt{\frac{40}{39}} (7.405) = 7.500 \]

j) \(s^2 = 56.27 \)

12) No contract deadline was given, so assume 36 as a scheduled time. Look for a path where (15-65) = 0 everywhere.

\[
\begin{array}{cccccc}
\text{START} & \text{A} & \text{B} & \text{C} & \text{D} & \text{E} \\
\text{0} & \text{0} & \text{0} & \text{7} & \text{7} & \text{7} \\
\text{7} & \text{9} & \text{13} & \text{7} & \text{13} & \text{7} \\
\text{12} & \text{16} & \text{13} & \text{7} & \text{13} & \text{7} \\
\text{12} & \text{25} & \text{29} & \text{16} & \text{29} & \text{13} \\
\text{31} & \text{36} & \text{36} & \text{36} & \text{36} & \text{36} \\
\text{36} & \text{36} & \text{36} & \text{36} & \text{36} & \text{36} \\
\text{FINISH} & & & & & \\
\end{array}
\]

c) 36

d) 36

e) 0

8) Float is same as slack = 0
To solve this as a regular CPM problem, it is necessary to calculate \(\bar{t}_{\text{mean}} \) and \(\sigma \) for each activity. For activity A,

\[
\bar{t}_{\text{mean}} = \frac{1}{6} [1 + (4)(3) + 5] = 2.33
\]

\[
\sigma_A = \frac{1}{6} (5-1) = 0.67
\]

The following table is generated in the same manner,

<table>
<thead>
<tr>
<th>Activity</th>
<th>(\bar{t}_{\text{mean}})</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>2.33</td>
<td>0.67</td>
</tr>
<tr>
<td>B</td>
<td>10.5</td>
<td>2.17</td>
</tr>
<tr>
<td>C</td>
<td>11.83</td>
<td>2.17</td>
</tr>
<tr>
<td>D</td>
<td>4.17</td>
<td>0.83</td>
</tr>
<tr>
<td>Finish</td>
<td>28.83</td>
<td>0</td>
</tr>
</tbody>
</table>

By observation, the critical path is Start-A-D-C-Finish; the project variance is

\[
\sigma^2 = (6)^2 + (2.17)^2 + (2.17)^2 + (18)^2 = 10.56
\]

The project standard deviation is

\[
\sigma = \sqrt{10.56} = 3.25
\]

So, we assume the completion times are normally distributed with a mean of 28.83 and a standard deviation of 3.25.

The standard normal variable is

\[
Z = \frac{28.83 - 15.42}{3.25} = 0.56
\]

Area under tail for \(Z = 0.56 \) is \(0.2123 \)

So, \(0.5 - 0.2123 = 0.2877 \) (28.77%)

\[
\boxed{\text{Area} = 0.2877}
\]

\[\lambda = 20\]

From page 1-22a)

(a) \(P[x < 17] = F(17) = \frac{e^{-20}(20)^{17}}{17!} = 0.076 \)

(b) \(P[x \leq 23] = F(0) + F(1) + F(2) + F(3) \)

\[
= \frac{e^{-20}(20)^{0}}{0!} + \frac{e^{-20}(20)^{1}}{1!} + \frac{e^{-20}(20)^{2}}{2!} + \frac{e^{-20}(20)^{3}}{3!}
\]

\[
= 2 \times 10^{-9} + 4.12 \times 10^{-8} + 4.12 \times 10^{-7} + 2.75 \times 10^{-6}
\]

\[
= 3.2 \times 10^{-6}
\]

From page 1-22b)

\[\mu = 1/23 \]

\[P[x > 25] = 1 - F(25) = e^{-25/23} = 0.337\]
16 FIRST, PLOT THE DATA TO SEE IF IT IS LINEAR

\[y = \# \text{ OF VEHICLES} \]

\[X = \# \text{ CARS IN TRAIN} \]

IT DOESN'T LOOK LINEAR, SO TRY THE FORM

\[y = a + bx^2 \]

WHERE \(z = \log_{10} x \)

\[\begin{array}{c|c|c}
 z & y & \sqrt{y} \\
 \hline
 0.3 & 14.8 & 3.87 \\
 0.7 & 18.0 & 4.22 \\
 1.0 & 23.0 & 4.78 \\
 1.3 & 29.9 & 5.47 \\
\end{array} \]

THAT ISN'T LINEAR EITHER, WE'VE OVERCOMPUTED THE CURVE, TRY THE FORM

\[y = a + bx \]

WHERE \(w = z^2 = (\log_{10} x)^2 \)

\[\begin{array}{c|c|c}
 w & y & \sqrt{y} \\
 \hline
 0.09 & 14.8 & 3.87 \\
 0.49 & 18.0 & 4.22 \\
 1.17 & 23.0 & 4.78 \\
 2.09 & 29.9 & 5.47 \\
\end{array} \]

FROM PAGE 1-13

\[\sum w = 4.6 \quad \quad \sum y = 106.1 \]

\[(\sum w)^2 = 21.16 \quad (\sum y)^2 = 11257.2 \]

\[\sum w^2 = 6.43 \quad \sum y^2 = 23823.2 \]

\[w = 4.6 \quad y = 106.1 \]

\[\sum wy = 119.58 \]

\[m = \frac{(5)(119.58) - (4.6)(106.1)}{(5)(4.43) - 21.16} = \frac{54.84}{10.99} = 5.0 \]

\[b = 21.22 - (7.72)(9.2) = 14.12 \]

\[y = 14.12 + 7.72w \]

\[= 14.12 + 7.72z^2 \]

\[= 14.12 + 7.72(\log_{10} x)^2 \]

The correlation coefficient is

\[r = \frac{(5)(119.58) - (4.6)(106.1)}{\sqrt{(5)(4.43) - 21.16)(5)(23823.2) - 11257.2} = 0.999 \]

17 (a) USE THE 'CHARACTERISTIC EQUATION' METHOD TO SOLVE THE HOMOGENEOUS CASE (IT IS MUCH QUICKER TO USE LAPLACE TRANSFORMS, HOWEVER)

\[x'' + 2x' + 2x = 0 \]

DIFF. EQ.

\[R^2 + 2R + 2 = 0 \]

CHARACTERISTIC EQ.

COMPLETE THE SQUARE TO FIND \(R \)

\[R^2 + 2R = -2 \]

\[(R + 1)^2 = -2 + 1 \]

\[R = -1 \pm i \]

\[X(t) = A_1 e^{-t} \cos t + A_2 e^{-t} \sin t \]

Now use the initial conditions to find \(A_1 \) and \(A_2 \).

\[x(0) = 0 \]

\[0 = A_1(1)(0) + A_2(1)(0) \]

\[A_1 = 0 \]

Differential of the solution

\[x(t) = A_2 \left[e^{-t} \cos t - e^{-t} \sin t \right] \]

Using \(x'(0) = 1 \)

\[1 = A_2 \left[(1)(1) - (0)(0) \right] \]

\[A_2 = 1 \]

And the solution is \(x(t) = e^{-t} \sin t \)

(b) WITH NO DAMPING, THE DIFFERENTIAL EQUATION WOULD BE

\[x'' + 2x = 0 \]

This has a solution of \(x = \sin \sqrt{2}t \), so \(\omega_n = \sqrt{2} \)

(c) \(x(t) = e^{-t} \sin t \)

\[x'(t) = \left(e^{-t} \sin t + e^{-t} \cos t \right) \]

\[= e^{-t} \sin t + e^{-t} \cos t \]

For \(x \) to be maximum, \(x'(t) = 0 \). Since \(e^{-t} \) is never large and \(e^{i} \) is very large, \(\cos t - \sin t \) must be zero. This occurs at \(t = \frac{\pi}{2} = 1.5708 \) radians, so

\[x(1.5708) = e^{-1.5708} \sin (1.5708) = 0.322 \]

(d) USE THE LAPLACE TRANSFORM METHOD

\[x'' + 2x' + 2x = \sin t \]

\[s^2 X(s) + 2sX(s) + 2X(s) = \frac{1}{s^2 + 1} \]

\[s^2 X(s) + 1 + 2sX(s) + 2X(s) = \frac{1}{s^2 + 1} \]

\[X(s) \left[s^2 + 2s + 2 \right] - 1 = \frac{1}{s^2 + 1} \]